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Mapping Genes That Underlie Ethnic Differences in Disease Risk: Methods
for Detecting Linkage in Admixed Populations, by Conditioning on
Parental Admixture
Paul M. McKeigue
Epidemiology Unit, London School of Hygiene and Tropical Medicine, London

Summary

Genes that underlie ethnic differences in disease risk can
be mapped in affected individuals of mixed descent if
the ancestry of the alleles at each marker locus can be
assigned to one of the two founding populations. Link-
age can be detected by testing for association of the
disease with the ancestry of alleles at the marker locus,
by conditioning on the admixture (defined as the pro-
portion of genes that have ancestry from the high-risk
population) of both parents. With regard to exploiting
the effects of admixture, this test is more flexible and
powerful than the transmission-disequilibrium test. Un-
der the assumption of a multiplicative model, the sta-
tistical power for a given sample size depends only on
parental admixture and the risk ratio r between popu-
lations that is generated by the locus. The most infor-
mative families are those in which mean parental ad-
mixture is .2–.7 and in which admixture is similar in
both parents. The number of markers required for a
genome search depends on the number of generations
since admixture and on the information content for an-
cestry (f) of the markers, defined as a function of allele
frequencies in the two founding populations. Simula-
tions using a hidden Markov model suggest that, when
admixture has occurred 2–10 generations earlier, a mul-
tipoint analysis using 2,000 biallelic markers, with f val-
ues of 30%, can extract 70%–90% of the ancestry in-
formation for each locus. Sets of such markers could be
selected from libraries of single-nucleotide polymor-
phisms, when these become available.
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Introduction

When there has been recent admixture between two pop-
ulations that, for genetic reasons, have different disease
risks and when the ancestry of the alleles at marker loci
can be assigned to one of these two founding popula-
tions, the gametic disequilibrium generated by admix-
ture can be exploited to map the genes that underlie
these ethnic differences in disease risk (Chakraborty and
Weiss 1988). If a marker locus is linked to a locus where
genetic variation underlies a difference, in disease risk,
between the two founding populations, the proportion
of alleles at the marker locus that have ancestry from
the high-risk population will be higher in affected in-
dividuals than that expected by chance (McKeigue
1997).

If admixture (defined as the proportion of an individ-
ual’s genome that has ancestry from the high-risk pop-
ulation) varies among individuals in the admixed pop-
ulation, the risk of disease will vary with admixture. The
frequency of alleles that have ancestry from the high-
risk population therefore will be higher in affected than
in unaffected individuals sampled from the population
of mixed descent. For example, type 2 diabetes in pop-
ulations of mixed European/Native American descent is
associated with markers of Native American ancestry,
such as GM haplotypes, that presumably are unlinked
to the disease (Knowler et al. 1988). To exploit the effects
of admixture, to map genes that underlie ethnic differ-
ences in disease risk, we require a statistical test that
eliminates the association in the ancestry of alleles at
unlinked loci that is generated by variation in the overall
admixture in individuals in the population.

In an initial exploration of the admixture approach
(McKeigue 1997), I suggested use of the transmission-
disequilibrium test (Ewens and Spielman 1995) to test
for excess transmission of alleles that have ancestry from
the high-risk population to affected offspring of parents
who have inherited, at the marker locus, one allele from
each of the two founding populations. This article ex-
plores the properties of an alternative test for linkage in
admixed populations, by conditioning on the overall ad-
mixture of each parent. This test detects association only
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in the presence of linkage and is shown to be more pow-
erful and flexible than the transmission-disequilibrium
test, in exploiting the linkage disequilibrium generated
by admixture. The sample size required for detection of
linkage by this approach is examined for various genetic
models and values of parental admixture. Statistical
methods by which ancestry of the alleles at each locus
can be estimated, by combining marker data at all loci
for each family in a multipoint analysis, are outlined.
The ancestry information (f) conveyed by a marker is
derived as a function of allele frequencies in the two
founding populations, and the number of markers re-
quired for a genome search is estimated by simulation.

Test for Association Conditional on Parental
Admixture

Comparison with the Transmission-Disequilibrium Test

We consider a population in which admixture has oc-
curred between a low-risk population X and a high-risk
population Y, and we denote alleles that have ancestry
from population Y as “Y by descent.” We define the
admixture of an individual as the probability that an
allele chosen at random from a locus chosen at random
from that individual is Y by descent. Individuals whose
admixture is are referred to as “equally admixed,” and1

2

individuals who have one allele, at a locus, derived from
each of the two founding populations are referred to as
“heterozygous for ancestry” at that locus.

Using the transmission-disequilibrium test, we can test
for excess transmission of alleles Y by descent, from
parents heterozygous for ancestry at the marker locus
to affected offspring. When used in this manner, the
transmission-disequilibrium test is a test for association
conditional on the ancestry of parental alleles at the
marker locus. One limitation of a test conditioning on
parental ancestry at the marker locus is that it requires
both parents to be available for genotyping, unless pa-
rental genotypes can be inferred from the genotypes of
unaffected sibs. This limits the possibilities for the study
of late-onset conditions such as non–insulin-dependent
diabetes. A more fundamental disadvantage is that con-
ditioning on parental ancestry at the marker locus does
not fully exploit the information generated by admix-
ture, except when parents are from the F1 generation
and therefore are heterozygous for ancestry at all loci.

This can be seen by considering a simple example.
Suppose that we study an autosomal recessive Mende-
lian trait for which the frequency of the high-risk allele
is 0 in population X and 1 in population Y. Suppose
that mixed unions occur between individuals in popu-
lations X and Y and that the offspring of these mixed
unions form an endogamous subpopulation within
which random mating produces successive generations

equivalent to the ( ) generations produced inF , F , F , )2 3 4

an experimental cross between inbred strains. In a sam-
ple of n affected individuals from the F3 and subsequent
generations, all 2n alleles at the trait locus will be Y by
descent. Half the 2n parents of these affected individuals
will be heterozygous for ancestry at the trait locus, and
half will have two alleles Y by descent at the trait locus
(the frequencies of the three possible mating types XY/
XY, XY/YY, and YY/YY are , , and , respectively).1 1 1

4 2 4

We could use the transmission-disequilibrium test to ex-
amine the n alleles transmitted, from parents heterozy-
gous for ancestry, to affected offspring and to test the
proportion of these n alleles that are Y by descent, for
departure from the proportion , expected under the null1

2

hypothesis. Alternatively, we could examine all 2n alleles
at the trait locus in affected offspring and test the pro-
portion of these 2n alleles that are Y by descent, for
departure from the proportion , expected from the1

2

overall admixture of their parents. Because the trans-
mission-disequilibrium test is restricted to transmissions
from heterozygous parents, it uses only half the linkage
information that is present in the F3 and subsequent
generations.

A general expression for the proportion P of alleles
at the disease locus that have ancestry from the high-
risk population, in affected offspring, is derived in Ap-
pendix A. For the affected offspring of equally admixed
parents, this proportion is the same whether we examine
only the alleles transmitted from parents heterozygous,
for ancestry, at the disease locus (eq. [A1]) or all alleles
transmitted to these offspring (eq. [A2]). For the F3 and
subsequent generations in which parental genotypes are
in Hardy-Weinberg equilibrium, the probability that a
parent is heterozygous for ancestry at the disease locus,
given that the offspring are affected, is . Since only half1

2

the parents of affected individuals are heterozygous for
ancestry at the disease locus, a transmission-disequilib-
rium test will require twice as many families as a test
conditioning on parental admixture, to detect departure
from the null hypothesis that . Comparisons show1P � 2

that, over a wide range of values of parental admixture,
the required sample size for a transmission-disequilib-
rium test is approximately twice as large as that for a
test conditioning on parental admixture.

Test Conditional on Parental Admixture as a Test for
Linkage

In testing for association between a trait and the an-
cestry of alleles conditional on parental admixture, we
are testing for gametic disequilibrium in ancestry, be-
tween alleles at the trait locus and alleles at the marker
locus, that is independent of parental admixture. We can
argue by induction that if there has been no selection of
alleles at these loci, since admixture, then this is a specific
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Table 1

Frequencies with Which Gametes of Each Type Are Produced by Offspring
of Parents with Admixture M1 and M2, for Two Unlinked Loci

GAMETE [FREQUENCY]
FROM PARENT 1

PROPORTIONS IN WHICH OFFSPRING PRODUCE

GAMETES OF TYPES AYBY, AYBX, IF LOCI A AND B
ARE UNLINKED, WHEN GAMETE [FREQUENCY]

FROM PARENT 2 IS

AXBX
2[(1 � M ) ]2

AXBY

[M (1 � M )]2 2

AYBX

[M (1 � M )]2 2

AYBY
2[M ]2

AXBX
2[1 � M ) ]1 0, 0 0, 0 0, 1

2 ,1 1
4 4

AXBY [M (1 � M )]1 1 0, 0 0, 0 ,1 1
4 4 , 01

2

AYBX [M (1 � M )]1 1 0, 1
2 ,1 1

4 4 0, 1 ,1 1
2 2

AYBY
2[M ]1 ,1 1

4 4 , 01
2 ,1 1

2 2 1, 0

test for linkage between the marker locus and the trait
locus.

Let Mi be the admixture of the ith parent in a pop-
ulation, and consider two loci, A and B, in a gamete
produced by this parent. Let AYi be the event that the
gamete carries an allele Y by descent at locus A, and let
BYi be the event that the gamete carries an allele Y by
descent at locus B. Suppose that the events AYi and BYi

are independent, given that parental admixture has the
value Mi. This is equivalent to the assumption that

P(B FA ) � P(B ) � M . (1)Yi Yi Yi i

If equation (1) holds, the ith parent will produce gam-
etes of ancestry AYBY, AYBX, AXBY, and AXBX, in the
proportions , , , and2M M (1 � M ) M (1 � M ) (1 �i i i i i

, respectively. Consider the offspring of two parents2M )i
with admixture M1 and M2. The 16 possible parental
mating types are shown in table 1, together with the
proportions in which offspring of each mating type pro-
duce gametes of ancestry AYBY and AYBX, if the loci are
unlinked. Multiplication of the frequency of each mating
type by the proportion in which each type of gamete is
produced by offspring of this mating type and sum-
mation of these product terms over mating types show
that offspring of these parents produce gametes of an-
cestry AYBY and AYBX in the proportions M2 and

, respectively, where . There-1M(1 � M) M � (M � M )1 22

fore, the probability that a gamete produced by these
offspring carries an allele Y by descent at locus B is equal
to M, whether or not the gamete carries an allele Y by
descent at locus A. Thus, if equation (1) holds for the
gametes produced by all parents in one generation and
if loci A and B are unlinked, then it will hold for the
next generation also. In gametes from either of the two
founding populations, disequilibrium in the ancestry of
alleles that is independent of parental admixture cannot
occur: specifying admixture as 0 (gametes from popu-
lation X) or 1 (gametes from population Y) specifies

ancestry at all loci. It follows that equation (1) holds for
all generations that are of mixed descent, if loci A and
B are unlinked, whatever the history of admixture. It
follows that, for two unlinked loci, disequilibrium in the
ancestry of alleles that is independent of parental ad-
mixture cannot arise except by chance. If we condition
on parental admixture, a test for association between a
trait and the ancestry of alleles at a marker locus is
therefore a specific test for linkage.

Relation of Required Sample Size to Population Risk
Ratio and Admixture

Sample Size in an Equally Admixed Population

Assuming equal admixture in the parental generation,
we can use equation (A3) in Appendix A to examine
how much the required sample size is likely to depend
on the underlying genetic model. Let r be the population
risk ratio generated by the locus—that is, the ratio of
disease risk in population Y to disease risk in population
X. Equation (A3) can be simplified to an expression for
P that depends only on r, for the following four simple
models:

1. For the multiplicative model , where2f � gf � g f2 1 0

g is the genotypic risk ratio and fi is the penetrance of
the genotype with i copies of the high-risk allele
(Risch and Merikangas 1996), 1 �P � � ( r �2

;�1) / (2 r � 2)
2. For the additive model , 1f � f � f � f P � �2 1 1 0 2

;(r � 1) / (4r � 4)
3. For the recessive model , with the low-riskf � f1 0

allele fixed (allele frequency equal to 1) in the low-risk
population, ; and1P � � (r � 1) / (2r � 6)2

4. For the dominant model , with the high-riskf � f2 1

allele fixed in the high-risk population, 1P � � (r �2

.1) / (6r � 2)

Under the null hypothesis, P has a value of . For a1
2

given value of r, P is furthest from for a recessive model1
2
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Figure 1 Relation of required sample size to r, under four pos-
sible genetic models: additive, multiplicative, recessive with low-risk
allele fixed in low-risk population, and dominant with high-risk allele
fixed in high-risk population. Sample sizes are for 90% power to detect
locus, at .P ! .001

Figure 2 Relation of required sample size to M (assumed to be
the same in all parents) and r generated by the locus, under the as-
sumption of a multiplicative model. Sample sizes are for 90% power
to detect locus, at .P ! .001

with the low-risk allele fixed in the low-risk population
X and closest to for a dominant model with the high-1

2

risk allele fixed in the high-risk population Y. Since the
sample size required to detect departure from the null
hypothesis depends on the deviation of P from its null
value, these two extreme models thus define the smallest
and largest sample sizes required to detect linkage, for
a given value of r. Figure 1 shows the relation of required
sample size (calculated for 90% power to detect at

, by use of a one-sided test) to r, for these fourP ! .001
models. When , a sample of a few hundred familiesr x 2
has adequate statistical power, whatever the underlying
genetic model. When , between 300 and1.5 ! r X 2
1,000 families are required under a multiplicative model,
but, for a given value of r, the sample size required under
a dominant or recessive model does not vary by more
than approximately one-third that required under a mul-
tiplicative model. In contrast, the statistical power of an
affected-sib-pair design is critically dependent on the al-
lele frequency and the genotypic risk ratio (Risch and
Merikangas 1996): only when the frequency of the high-
risk allele is !.25 and the genotypic risk ratio is x3
(corresponding to a sibling recurrence-risk ratio x1.36)
does the affected-sib-pair design have 90% power to
detect a locus, at , with !500 families.P ! .001

Effect of Unequal Admixture on Required Sample Size

The above analyses are based on the assumption of
an equally admixed population. Even when admixture
is unequal, under a multiplicative model the statistical

power of the admixture design can be shown to depend
only on parental admixture and the r that is generated
by the locus. We write P(Yj) for the probability that when
one allele is chosen at random from each parent, from
a locus chosen at random, j of these two alleles are Y
by descent. The probabilities P(Y0), P(Y1), and P(Y2)
then are determined by admixture M1 and M2 of parents
1 and 2, respectively. Substituting into2f � gf � g f2 1 0

equation (A2) in Appendix A, we obtain an expression
for the proportion P of alleles at the disease locus that
have ancestry from the high-risk population, in affected
offspring, that depends only on r and the admixture of
both parents:

1 �P(Y ) r � P(Y )r1 22
P � .�P(Y ) � P(Y ) r � P(Y )r0 1 2

When parents belong to a homogeneous population
of mixed descent or when mating within the admixed
population is highly assortative with respect to admix-
ture (e.g., if socioeconomic status is closely related to
admixture), admixture generally will be similar in both
parents. Figure 2 shows the relation of required sample
size, for 90% power to detect at , to admixtureP ! .001
M, assumed (for illustration) to be the same in all par-
ents. The sample size is smallest when M is ∼.4 but
remains close to its minimum value for any values of M
between ∼.2 and ∼.7.

When admixture differs between the two parents, the
probability P(Y1), in relation to P(Y0) and P(Y2), will be
larger than that expected for Hardy-Weinberg frequen-
cies, and the sample size required to detect departure
from the null hypothesis will be larger than thatr � 1
required when admixture is the same in both parents.
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Figure 3 Relation of required sample size to mean parental ad-
mixture, under the assumptions of the same pair of parental admixture
values M1 and M2 in each family, a multiplicative model, and .r � 2
Sample sizes are for 90% power to detect locus, at .P ! .001

Figure 3 shows the effect on sample size if admixture
differs between the two parents, on the basis of a mul-
tiplicative model and . We assume, for the purposer � 2
of illustration, that the sample consists entirely of fam-
ilies with the same pair of values for M1 and M2. If mean
parental admixture is close to , the required sample size1

2

is ∼15% larger when and ∼75% largerFM � M F � .251 2

when , compared with the sample sizeFM � M F � .51 2

required when both parents are equally admixed.
When mean parental admixture varies outside the

range .3–.6 and when there are large differences between
the admixture of the two parents, statistical power for
a given sample size is reduced markedly. Thus, for a
sample consisting entirely of families for which M �1

and or 1 (equivalent to a backcross between.5 M � 02

an equally admixed individual and an individual from
one of the two founding populations), the required sam-
ple size is approximately three times larger than that
required when both parents are equally admixed.

Multipoint Statistical Methods for Assignment of
Ancestry at Each Locus

The above analyses demonstrate the theoretical limit
of the statistical power of the admixture design to detect
linkage, if for each affected individual the ancestry of
the alleles at each locus can be assigned accurately as 0,
1, or 2 alleles Y by descent. Even if we choose marker
loci at which an allele that is absent in one of the two
founding populations is common in the other, we usually
will not be able to assign the ancestry of alleles at a locus
by typing a single marker. Thus, if we rely on analyzing
markers one locus at a time, the statistical power of an
admixture study will not be anywhere near its theoretical
limit (Kaplan et al. 1998). With a multipoint analysis,
however, information from closely spaced marker loci
can be combined so as to assign ancestry at each locus
accurately, even though no single marker is fully infor-
mative for ancestry.

The underlying principle of such a multipoint analysis
is simple. We first choose a set of marker polymorphisms
for which there are large allele-frequency differences be-
tween populations X and Y and space these markers at
a much higher density than the density of transitions of
ancestry (between X by descent and Y by descent) on
chromosomes of individuals of mixed descent. If we type
these markers in an affected individual, together with
those in the individual’s parents, sibs, or offspring, we
can assign haplotypes and reconstruct the sequence of
marker alleles on each chromosome. Over any short in-
terval, the haplotype in an individual of mixed descent
will consist mainly of alleles that are more common in
one of the two founding populations than in the other.
By combining the information from these marker alleles,

we can reduce the uncertainty with which the ancestry
of the alleles at each locus is assigned as 0, 1, or 2 alleles
Y by descent. We now examine possible approaches to
developing a multipoint method that simultaneously as-
signs haplotypes, combines information from closely
spaced markers to estimate ancestry of each allele at each
marker locus, and tests for linkage with the trait under
study.

One method would be to extend the approach that
has been developed, by Lander and Green (1987) and
Kruglyak and Lander (1995), for classic linkage studies.
In this approach, each meiosis that gives rise to a non-
original (an individual with one or more parents in the
pedigree) is modeled as a Markov process in which each
locus corresponds to one step in the chain. The chain
state at each locus is defined as 0 or 1 according to
whether the paternally derived or the maternally derived
marker allele is transmitted. For each locus, the chain
states for all meioses in the pedigree are combined into
an inheritance vector. Standard methods for hidden Mar-
kov models (MacDonald and Zucchini 1997) then are
applied to calculate the probability distribution of the
inheritance vectors at each locus, conditional on the
marker data for all loci simultaneously. If the entire his-
tory of admixture for the individual under study is
known so that a pedigree can be constructed in which
each original is from one of the founding populations,
it is, in principle, straightforward to extend this hidden
Markov model to estimate the ancestry of each allele at
each locus, conditional on the marker data. When ad-
mixture dates back more than three generations, how-
ever, it is unlikely that the pedigree that traces the an-
cestry of the individual under study back to originals in
the founding populations will be known.

A variant of the hidden Markov model approach, in
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which the history of admixture for the individual under
study is unknown, would be to construct a simpler ped-
igree, based on the individual under study plus any par-
ents, sibs, or offspring who have been typed. We then
could model the transitions of ancestry on each set of
chromosomes inherited from a parent of an original, as
a two-state Markov process (with unknown generator
matrix) on a continuous axis. Standard methods for hid-
den Markov models then could be used to estimate the
probability distribution at each locus, for the ancestry
of the alleles transmitted to the affected individual. The
problem with this approach is that the transitions of
ancestry on chromosomes inherited from a parent of
mixed descent do not necessarily follow a first-order
Markov process. When densely spaced markers with
high information content are used, a first-order Markov
model still may be a satisfactory approximation for pur-
poses of estimating ancestry at each locus. Alternatively,
it may be possible to fit a higher-order hidden Markov
model, for which methods have been described elsewhere
(MacDonald and Zucchini 1997).

An alternative approach, which would overcome the
limitations of hidden Markov models, would be to use
Markov chain simulation (Thompson 1994; Gelman
and Rubin 1996) to estimate the probability distribution
of ancestry at each locus, conditional on all marker data
and on any available information about the history of
admixture. If all unknown quantities are treated as ran-
dom variables and if prior distributions for these vari-
ables are specified, the Gibbs sampler or other sampling
algorithms can be used to construct a Markov chain that
converges on the joint posterior distribution of these
variables, given the observed data. Thus, when the his-
tory of admixture is unknown, we can define random
variables to specify a pedigree that traces the ancestry
of the individual under study back to originals in one
of the two founding populations. The values of each
coordinate of the inheritance vector—conditional on the
transmissions at adjacent loci, the ancestry of the orig-
inals, and the observed marker data—then could be up-
dated by the Gibbs sampler. To test for linkage, one
could define a score as the vector of the observed number
minus the expected number of alleles Y by descent and
could obtain the expectation of this score statistic and
its variance (the information matrix) by averaging over
the posterior distribution of the missing data, given the
observed data (Little and Rubin 1987, pp. 127–140).
When the history of admixture is known, the estimates
of ancestry obtained by Markov chain simulation would
be identical to those obtained analytically from a hidden
Markov model, since both methods are based on the
same underlying statistical model.

Although in principle Markov chain simulation can
correctly estimate the distribution of states of ancestry
at each locus, conditional on the observed marker data,

when the Gibbs sampler is applied to linkage analyses,
it usually is necessary to modify the sampling algorithm
to ensure that the Markov chain adequately explores the
underlying probability space (Sobel and Lange 1993; Lin
et al. 1994). Before any multipoint method is used in
practice, extensive simulation would be required, to test
the robustness of the method when allele frequencies or
prior distributions are misspecified.

Marker Information Content for Ancestry

The ancestry information conveyed by a marker poly-
morphism can be measured by the extent to which typing
an allele at the marker locus reduces our uncertainty
about the ancestry of the allele. Since the ancestry in-
formation conveyed by a single marker varies according
to the prior probabilities of ancestry from each founding
population, it has been suggested that markers should
be selected according to the admixture of the population
under study (Kaplan et al. 1998). In a multipoint anal-
ysis, however, the dependence of information extracted
by markers on admixture is not necessarily the same as
that in a single-point analysis. If we score ancestry at a
locus as 0 when the allele is X by descent and 1 when
the allele is Y by descent, the variance of ancestry of this
allele in an equally admixed population is when no1

4

information about allele type is available and p(1 � p)
when the allele has been typed, where p is the posterior
probability that the allele is Y by descent, given the allele
type. Thus, the variance of ancestry is reduced by a pro-
portion equal to . We define the marker1 � 4p(1 � p)
information content for ancestry between two popula-
tions as the expected proportion f by which variance of
ancestry at a marker locus is reduced when an allele at
this locus is typed, for a population with equal admix-
ture from these two populations. For a biallelic marker,
this proportion is a function of the frequencies uX and
uY of allele 1 in populations X and Y, respectively:

2(u � u )X Y 1¯f � , where u � (u � u ) . (2)X Y2¯ ¯4u(1 � u)

Thus, an f value of 30% corresponds to andū � .23
or to and . f is¯Fu � u F � .46 u � .5 Fu � u F � .55X Y X Y

equal to the standardized variance of allele frequencies
originally defined by Wahlund (1928). For two popu-
lations, f represents the proportion by which heterozy-
gosity at the locus is reduced as a result of division into
two populations of equal size that have different allele
frequencies, in relation to the heterozygosity of a pop-
ulation formed by pooling these two populations. The
average f value of markers is closely related to the genetic
distance between the two populations, defined as the
fixation index FST, which is an estimate of the average
proportion by which heterozygosity has been reduced



McKeigue: Mapping Genes in Admixed Populations 247

since the two populations diverged from a common an-
cestral population (Wright 1951; Cavalli-Sforza et al.
1994). If FST distances are calculated with a correction
for sampling error (Reynolds et al. 1983), the mean f
value of markers is slightly more than half the FST

distance.

Distribution of Marker Information Content

We can estimate, from published surveys of allele fre-
quencies in different populations, what proportion of
biallelic markers are likely to have f values above any
given cutoff level, between any given pair of founding
populations. Large differences, in allele frequencies, be-
tween two populations can result either from drift or
from disruptive selection, as, for instance, when a
marker is in linkage disequilibrium with a locus that
influences susceptibility to malaria. The distribution of
FST values for marker polymorphisms has been found to
be more skewed than would be expected under drift
alone (Bowcock et al. 1991), suggesting that at least one-
fifth of markers have been under disruptive selection.
Thus, this means that markers that have large f values
(120%) between two populations can be found easily,
even when the mean f value between these two popu-
lations is !10%.

In two recent surveys of allele frequencies for restric-
tion-site polymorphisms in unadmixed Europeans and
Africans (Jorde et al. 1995; Poloni et al. 1995), the mean
f value between the two populations was ∼8%. Although
these f values may be inflated by sampling error in the
estimates of allele frequencies, in these two studies most
markers were typed on samples of at least 150 chro-
mosomes in each population, so that this bias is likely
to be small. Of the markers typed, 8% (8/95) had f
values, between Europeans and Africans, that were
120%, and the mean f value for markers that were above
this cutoff was ∼30%. A few markers with ,f 1 70%
between Europeans and Africans, are known, such as
the FY and GM loci (Cavalli-Sforza et al. 1994). In fu-
ture, the main sources of large numbers of biallelic mark-
ers are likely to be the libraries of single-nucleotide poly-
morphisms (SNPs) that are now being assembled
(National Human Genome Research Institute 1998). If
the distribution of f values for SNPs is similar to that
for biallelic restriction-site polymorphisms, we can es-
timate that, to identify 2,000 markers that have an av-
erage f value of 30%, between Europeans and an African
population, it will be necessary to screen a library of
x30,000 SNPs.

The FST distance from Europeans to west Africans is
∼.15 (Cavalli-Sforza et al. 1994). The FST distances from
Europeans to Native Australians (.15), from Europeans
to Pacific Islanders (.13), and from Europeans to Native
Americans (.11) are not much smaller than the FST dis-

tance from Europeans to west Africans. Thus, it may be
possible to identify sets of markers that have high f val-
ues between these pairs of populations also, by screening
libraries of SNPs. Identification of markers that have
high f values between Europeans and Indians, for which
the FST distance is only ∼.05 (Cavalli-Sforza et al. 1994),
is likely to be more difficult.

Information Extracted by Markers, by Use of
Simulation with a Hidden Markov Model

The above analyses suggest that it will be possible to
identify a set of 2,000 markers that have average f values
of 30%, between any two groups that are separated by
an FST distance comparable to that between Europeans
and west Africans. We can use simulation to examine
the ancestry information that is extracted by a multi-
point analysis using such markers. For the purpose of
this exercise, we assume that haplotypes have been re-
constructed accurately. The problem of assigning ances-
try at each locus then is reduced to that of combining
the information from a sequence of marker alleles on a
set of chromosomes inherited from the same parent, so
as to estimate the ancestry of each allele. For an equally
admixed population within which random mating
generates successive generations equivalent to the

generations in an experimental cross, Ap-(F , F , F , ))2 3 4

pendix B shows that the transitions of ancestry on chro-
mosomes can be approximated by a Markov process so
that a hidden Markov model can be applied.

A two-state Markov chain representing ancestry tran-
sitions between marker loci on a chromosome was sim-
ulated for a locus flanked on either side by 10 evenly
spaced markers. Spacing between markers was set to
three alternative values: 1 cM, 1.5 cM, or 2 cM. Tran-
sition probabilities were set to represent chromosomes
from generations F2–F10. Marker allele frequencies in
populations X and Y were chosen to give an f value of
30% for each marker. At each locus, an allele type was
generated randomly from the probability distribution
specified by the ancestry and the ancestry-specific fre-
quency of the allele. The probability p that the allele at
the locus under examination is Y by descent, conditional
on all 21 markers, was calculated from a hidden Markov
model as in Appendix B. Information extraction is es-
timated as the mean value of , on the basis1 � 4p(1 � p)
of 500 simulations: this is the proportionate reduction,
in variance of ancestry, that results from typing the
markers.

The results of this simulation are shown in figure 4.
With marker spacing of 1.5 cM, information extraction
at the locus falls from ∼90% in chromosomes from gen-
eration F2 to ∼70% in chromosomes from generation
F10. In practice, information extraction would be lower
than this, because there would be some uncertainty in
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Figure 4 Information content extracted by a hidden Markov
model estimating ancestry at a marker locus flanked by 10 evenly
spaced markers on each side, by use of markers with an f value of
30%, on chromosomes of individuals from generations F2–F10.

the reconstruction of haplotypes and because, when the
history of admixture is unknown, parameters for the
model have to be estimated from the data. The infor-
mation extracted does not depend on the marker allele
frequencies as long as these are chosen to give an f value
of 30% for each marker. Thus, results determined by
use of this simple model suggest that markers with av-
erage f values of 30%, spaced at intervals of 1.5 cM
(equivalent to ∼2,000 markers if the length of the ge-
nome is 3,000 cM), will be adequate for a genome search
in populations in which admixture dates back X10
generations.

Discussion

The admixture design is analogous to linkage analysis
of an experimental cross between two inbred strains,
generalized to situations in which the founding popu-
lations are not inbred and the ancestry of individuals of
mixed descent is not under experimental control or is
not even known. Since linkage analyses of experimental
crosses between strains are generally more powerful than
linkage analyses within strains, for the detection of quan-
titative-trait loci (Kruglyak and Lander 1995), it is not
surprising that similar advantages in statistical power
apply to the admixture design, compared with conven-
tional allele-sharing designs for detection of genes of
modest effect. The only new technological development

required for the admixture design is the availability of
a library of x30,000 biallelic polymorphisms, together
with automated methods for typing them. Assembly of
libraries of SNPs is now in process (National Human
Genome Research Institute 1998).

On the basis of the results in this paper, it is possible
to outline an experimental strategy for exploiting ad-
mixture to map genes underlying ethnic differences in
disease risk, for populations in which admixture has
occurred within the past few hundred years. The first
step is to establish whether ethnic differences in disease
risk are likely to have a genetic basis. The strongest
evidence for this will come from population-based as-
sociation studies that show a relationship between risk
of disease and proportionate admixture from the high-
risk population. A set of markers suitable for genome-
wide assignment of ancestry is identified by screening
libraries of SNPs or other biallelic polymorphisms. The
information content for ancestry of each marker is es-
timated, and a set of x2,000 markers that have infor-
mation content 120% is chosen. When representative
samples of the populations from which founders origi-
nated are not available, a multipoint method could be
used to reestimate allele frequencies in the two founding
populations, from genotypes of families of mixed de-
scent. This also would correct the allele frequencies, for
drift or selection since admixture.

To map genes underlying the ethnic difference in dis-
ease risk, affected individuals of mixed descent are typed,
together with their parents, if available. Where parents
are not available, sibs or offspring of affected individuals
are typed. Information about the history of admixture
is obtained when possible, and the investigator attempts
to collect families in which both parents of the affected
individual have similar values of admixture, with a mean
value of .2–.7. A multipoint method, based on one of
the approaches outlined previously, is used to assign hap-
lotypes, estimate ancestry at each locus, and test for link-
age. The approach can be generalized easily to quanti-
tative traits, by sampling individuals whose trait values
vary from the value expected from their admixture.
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Appendix A

Ancestry at Disease Locus in Affected Individuals

We consider a disease locus with two alleles: a high-risk allele D1 and a low-risk allele D2. Let f0, f1, and f2 be
the penetrances of genotypes D2D2, D1D2, and D1D1, respectively. Let the frequencies of alleles D1, D2 be pX, qX,
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and pY, qY in populations X and Y, respectively. Suppose that an individual is taken at random from a population
in which there has been recent admixture between populations X and Y and that the ancestry of alleles at the
disease locus can be assigned as 0, 1, or 2 alleles Y by descent. Let F be the event that the individual is affected,
and let Gi be the event that the individual’s genotype at the disease locus has i copies of the D1 allele. We define
Yj as the event that, when one allele is chosen at random from each parent, at a locus chosen at random, j of these
two alleles are Y by descent. The probabilities P(Y0), P(Y1), and P(Y2) thus are determined by the admixture of
each parent.

Conditioning on Parental Ancestry at the Marker Locus

Let H be the event that the parent is heterozygous for ancestry at the disease locus, T the event that an allele Y
by descent is transmitted, and Sj the event that j alleles at the disease locus in the offspring are Y by descent. Let
M be the probability that the allele transmitted from the other parent is Y by descent. Then, the probabilities
P(S0FT), P(S1FT), and P(S2FT) are 0, , and M, respectively. Similarly, the probabilities P(S0FH), P(S1FH), and1 � M
P(S2FH) are , , and , respectively.1 1 1(1 � M) M2 2 2

For a test conditional on parental ancestry at the disease locus (or a nearby marker locus), we require the
probability P′ of transmission of an allele Y by descent, at the disease locus from a parent heterozygous for ancestry
at this locus, given that the individual is affected:

P(FFT)P(TFH)′P � P[TF(H and F)] � .
P(FFH)

We have , , and . Hence,1P(TFH) � P(FFT) � � � f P(GFS )P(SFT) P(FFH) � � � f P(GFS )P(SFH)j i i i j j j i i i j j2

1 ( ) ( )� � f P G d S P S d Tj i i i j j2′P �
( ) ( )� � f P G d S P S d Hj i i i j j

1 1 2 2( ) ( )1 � M [q q f � (q p � p q )f � p p f ] � M q f � 2p q f � p fX Y 0 X Y X Y 1 X Y 2 Y 0 Y Y 1 Y 22 2
� .

1 1 12 2 2 2( ) ( ) ( )1 � M q f � 2p q f � p f � [q q f � (q p � p q )f � p p f ] � M q f � 2p q f � p fX 0 X X 1 X 2 X Y 0 X Y X Y 1 X Y 2 Y 0 Y Y 1 Y 22 2 2

(A1)

Conditioning on Parental Admixture

We require the probability P that an allele at the disease locus, transmitted to an affected individual, is Y by
descent, given event F and the probabilities P(Y0), P(Y1), and P(Y2):

1 P(FFY )P(Y ) � P(FFY )P(Y )1 1 2 22
1P � P(Y FF) � P(Y FF) � .1 22 P(F)

We have and . Hence,P(FFY) � � f P(GFY) P(F) � � P(FFY)P(Y)j i i i j j j j

1 ( ) ( ) ( ) ( )P Y � f P G d Y �P Y � f P G d Y1 i i i 1 2 i i i 22
P �

( ) ( )� � f P G d Y P Yj i i i j j

1 2 2( )P(Y )[q q f � (q p � p q )f � p p f ] � P(Y ) q f � 2p q f � p f1 X Y 0 X Y X Y 1 X Y 2 2 Y 0 Y Y 1 Y 22
� .2 2 2 2( ) ( )P(Y ) q f � 2p q f � p f �P(Y )[q q f � (q p � p q )f � p p f ] � P(Y ) q f � 2p q f � p f0 X 0 X X 1 X 2 1 X Y 0 X Y X Y 1 X Y 2 2 Y 0 Y Y 1 Y 2

(A2)
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In a population in which all parents are equally admixed, the probability M is equal to , and the probabilities1
2

P(Y0), P(Y1), and P(Y2) are equal to , , and , respectively. Substituting these values into equations (2) and (A1)1 1 1
4 2 4

yields the same expression for P′ and P:

2 2 2 21 (q � q )f � 2(p q � p q )f � (p � p )fY X 0 Y Y X X 1 Y X 2′P � P � 1 � . (A3)2 2[ ]2 (q � q ) f � 2(p � p )(q � q )f � (p � p ) fX Y 0 X Y X Y 1 X Y 2

The r generated by the locus is given by

2 2p f � 2p q f � q fY 2 Y Y 1 Y 0r � .2 2p f � 2p q f � q fX 2 X X 1 X 0

For the four genetic models described in the text, expressions for P in terms of r can be obtained by substitution
into the above equations.

Appendix B

Fitting a Hidden Markov Model to Transitions of Ancestry on Chromosomes from the
Fn Generation of Mixed Descent

We consider a population in which the offspring of mixed unions form an endogamous subpopulation, within
which random mating produces successive generations equivalent to the generations produced by(F , F , F , ))2 3 4

an experimental cross between inbred strains. In a set of chromosomes from generation Fn, the coefficient Dn of
disequilibrium of ancestry between two loci separated by recombination fraction v (equivalent to a map distance
of x morgans) is , and, for ,1D � n x 21 4

1 n�2D � (1 � 2v)(1 � v)n 4

(as shown elsewhere [McKeigue 1997]), which can be rewritten as

n�21 1 1 1�2x �2x �nx n�2D � e � e � e cosh x( )n 4 2 2 4

1 �nx� e , for small values of x.4

The matrix T of transition probabilities is then given by

1 1 1 1�nx �nx� e � e2 2 2 2T � .1 1 1 1�nx �nx[ ]� e � e2 2 2 2

This is the transition matrix of a two-state Markov process on a continuous axis, in which the exponential
distribution parameters for the lengths of segments of each state have the value , and the stationary distribution1 n2

d is [ ]. Although this simple model holds only for an equally admixed population within which all mating occurs1 1
2 2

between successive nonoverlapping generations of mixed descent, we can use it to estimate the number of markers
required for a genome search, as a function of marker spacing, marker information content for ancestry, and number
of generations of admixture. Suppose that marker alleles have been typed at a sequence of m loci on a single
chromosome. For all values of i from 1 to m, we calculate for the ith locus (1) a diagonal matrix Qi, in2 # 2
which the diagonal elements are the probabilities of the observed marker allele at locus i, given each of the two
possible states of ancestry at this locus, and (2) the transition matrix Ti between locus i and locus . To2 # 2 i � 1
calculate the probability distribution of ancestry at locus t, we calculate row vectors at and bt as a �t

and . The expression gives a di-′ ′ ′dQ T Q T ) Q b � TQ T Q T ) T Q 1 [diag(a )diag(b )]/a b 2 # 21 1 2 2 t t t t�1 t�1 t�2 t�2 m�1 m t t t t
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agonal matrix in which the diagonal elements are the probabilities of each possible state of ancestry at locus t,
conditional on marker data at all m loci (MacDonald and Zucchini 1997).
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